Thomas O'Sullivan

Thomas O'Sullivan

Associate Professor, Electrical Engineering

University of Notre Dame

tosullivan@nd.edu

Prof. O’Sullivan is engaged in translational research involving the development and application of noninvasive optical imaging technologies. Uniting the principles of optical spectroscopy, semiconductor physics, microfabrication, and signal processing with human physiology and metabolism, the mission of his lab is to create the next generation of noninvasive medical imaging sensors and instrumentation. In particular, Prof. O’Sullivan is advancing diffuse optical spectroscopy and imaging, which allows for quantitative measurements of tissue architecture and metabolic function. This work, while applicable to many diseases, is focused on applications in breast oncology including risk assessment, screening, differential diagnosis, and predicting individual response to chemotherapy. DOS-based imaging is complementary to other breast imaging modalities because it does not involve ionizing radiation, provides excellent contrast in young women (as opposed to mammography) and is much more accessible (lower cost) than MRI.

Current and Recent Research Support

  • NIH NIBIB 1R01EB029595
  • DOD Breast Cancer Research Program
  • Breast Cancer Alliance Young Investigator Grant
  • Indiana Clinical and Translational Sciences Institute

Selected Publications

R. Stillwell, V. J. Kitsmiller, A. Y. Wei, A. Chong, L. Senn, and T. D. O’Sullivan. A scalable, multi-wavelength, broad bandwidth frequency-domain near-infrared spectroscopy platform for real-time quantitative tissue optical imaging. Biomed Opt Express. 2021; 12(11), 7261-79.

S. Vasudevan, C. Campbell, F. Liu, and T. D. O’Sullivan. Broadband diffuse optical spectroscopy of absolute methemoglobin concentration can distinguish benign and malignant breast lesions. J Biomed Opt. 2021; 26(6), 065004.

S. Vasudevan, F. Forghani, C. Campbell, S. Bedford, and T. D. O’Sullivan. Method for quantitative broadband diffuse optical spectroscopy of tumor-like inclusions. Applied Sciences 2020; 10(4):1419. 

N. Bosschaart, A. Leproux, O. Abdalsalam, W. Chen, C. E. McLaren, B. J. Tromberg, T. D. O’Sullivan. Diffuse optical spectroscopic imaging for the investigation of human lactation physiology: a case study on mammary involution. J Biomed Opt 2019; 24(5):056006.

H. S. Yazdi, T. D. O’Sullivan, A. Leproux, B. Hill, A. Durkin, S. Telep, J. Lam, S. S. Yazdi, A. M Police, R. M. Carroll, F. J. Combs, T. Stromberg, A. G. Yodh, B. J. Tromberg. Mapping breast cancer blood flow index, composition, and relative metabolism in a human subject using broadband, multimodal diffuse optical spectroscopies. J Biomed Opt. 2017; 22(4):045003.

J. M Cochran, D. R. Busch, A. Leproux, Z. Zhang, T. D. O'Sullivan, et al.  Tissue oxygen saturation predicts response to breast cancer neoadjuvant chemotherapy within 10 days of treatment. J Biomed Opt. 2018; 24(2):021202.

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O'Sullivan, et al. Predicting Responses to Neoadjuvant Chemotherapy in Breast Cancer: ACRIN 6691 Trial of Diffuse Optical Spectroscopic Imaging. Cancer Res. 2016; 76(20):5933-44. 

T. D. O’Sullivan, A. Leproux, J. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W. Chen, A. E. Cerussi, M. Su, and B. J. Tromberg. Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy. Breast Cancer Res. 2013; 15:R14.

Full Bio